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Short-Step-Stub Chebyshev
Transformers

PIETER W. VAN DER WALT, MEMBER, IEEE

Impedance

Abstruct —A transfer function for short-step impedance transforming

filters consisting of short cascaded TEM transmission-fine sections and at

least one commensurate length open-circuit Wtb is described. Element

vafues are given for a particular family of octave-bandwidth short-step

transformers that are much more compact than existing short-step trans-

formers.

1. INTRODUCTION

T HE well-known quarter-wave impedance transformer

[1] provides a convenient way to match a resistive

load to a generator with a resistive output impedance. The

transformer is easy to implement since the line characteris-

tic impedances all lie within the range defined by the port

resistances. The transformer is relatively long, which can

be a disadvantage in microwave integrated circuits, espe-

cially those working at the lower microwave frequencies.

For purposes of” comparison, the stripline layout of a

second-order quarter-wave transformer providing a match

between resistances of 1 and 10 Sl over a relative band-

width of 60 percent is shown in Fig. l(a). Element values

from the quoted references are shown in Table I for this,

as well as the other transformers mentioned below.

Matthaei [2] described a short-step transformer which

consists of an even number of cascaded unit elements. The

transformers are usually constructed from lines with a

length of 1/12 or 1/16 of a wavelength at the center

frequency of the response. Since the passband performance

of a short-step transformer’ of order 2n is roughly com-

parable to the performance of a quarter-wave transformer

of order n, the quarter-wave transformer is twice as long as

an equivalent short-step transformer with A/16 lines.

Short-step transformers are, in general, more difficult to

realize than quarter-wave transformers because of large

step discontinuities between sections and the large range of

impedance values within the transformer. For example, a

four-section X/16 Chebyshev transformer which matches

resistances with a ratio of 10:1 over a fractional band-

width of 60 percent, with a layout as shown in Fig. l(b),

has lines with a ratio of 15.4 between highest and lowest

characteristic impedance [2]. This, makes the transformer

unsuitable for many microstrip and stripline applications.

A remarkable short-step impedance transformer pro-

posed’ by Levy [3] reduces the realizability problems to a
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Fig. 1. Stripline layouts of impedance transformers with comparable
performance. (a) Quarter-wave.(b) A/16 Matthaei short-step.(c) A/16
Levy short-step. (d) L/16 sho~t-step-stub.

TABLE I
ELEMENTVALUESOFTHETRANSFORMERSIN FIG. 1 FORA MATCH

BETWEEN15AND1500

ITransformer
Figure

Element Values from left to right

Type Ohms

Quarter Wave 1(a) 28.94 77.96

Mat thae i
Short-step 1 (b) 66.63 12.09 186.1 i33.77

great extent, as the spread in line impedances is decreased

considerably. Fig. l(c) shows the stripline layout of this

transformer with a matching ratio of 10:1, a relative

bandwidth of 67 percent (one octave), and a shortest line

length of A/16. The length of the transformer is about the

same as Matthaei’s short-step transformer, but the ratio of

highest to lowest line impedance is only 6.4.

A new and very compact fourth-order A/16 short-step-

stub transformer, providing a match between 1 and 10 Q

over an octave bandwidth, is shown in Fig. l(d). The

transformer can be implemented with transmission lines

with a ratio of 14 between the highest and lowest char-
acteristic impedances. Since the stub lines can each be

fabricated in the form of two stubs with twice the char-

acteristic impedance connected in parallel, the ratio be-
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Fig. 2. Generaf form of short-step-stubtransformerswith r open-circuit
stubs and (n - r) cascade-connectedunit elements.
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Fig. 3. Equivalent commensurate networks used for transforming a
transformer with one or two stubs into Levy’s short-step transformer.
The stubs in the equivalent network, one with negative and one with
positive characteristic impedance,are degenerateand do not contribute
a transmission zero.

tween the highest and lowest characteristic impedance can

be reduced to 7. The transformer is therefore easier to

realize than the short-step transformer in Fig. l(b). The

n th-order transformer (with n even) of this type consists of

n/2 unit elements in cascade and n/2 open-circuit stubs.

In this paper, a general transfer function for the design

of short-step transformers is developed. It may be used to

synthesize short-step transformers of even-order n with r

(where r < n/2) open-circuit stubs and n – r cascaded

unit elements, as shown in Fig. 2, to provide a match

between resistance loads RI and R ~. This class includes

Matthaei’s transformer with r = O, as well as Levy’s trans-

former, whicli is designed with r =1 or r =2, and then

transformed into its final form with the network equiv-

alence of Fig. 3. The characteristic immittances of the

equivalent network in Fig. 3(b) are given in terms of the

immittances of the prototype in Fig. 3(a) by

21+ 22
Zc ==

2

YIZ*–l
YA =

21+ Z2

Z1Y2 – 1
YB =

Z1+Z2”

(la)

(lb)

(lC)

This transformation accounts for the very low imped-

ance spread in this transformer, as the cascade sections of

the transformed filter take on the average impedance val-

ues of the lines in the prototype filter. This averages out

the high--low impedance topology usually found in short-

step transformers. As the characteristic impedance of one

of the stubs in the equivalent network is always negative,

the prototype network must contain a stub with positive

characteristic impedance to absorb the negative element.

The transformation also accounts for Levy’s remark that

under certain conditions, negative element values result for

this transformer. It should be noted that in this paper, n,

the order of the transfer function approximation, is equal

to the total number of elements in the different prototypes.

It corresponds to 2n for single-ordered zeros and 2n + 2

for double-ordered zeros in Levy’s paper.

II. CHEBYSHEV TRANSFER FUNCTION

APPROXIMATION

Suitable transfer functions are derived by first trans-

forming the s-plane response to the p-plane using Richard’s

transformation; the p-plane bandpass response is then

transformed to the z-plane where a Chebyshev general

parameter characteristic function is found. This function is

transformed back to the p-plane where the transformers

are synthesized.

A typical frequency response for the short-step imped-

ance transformer of Fig. 2 is shown in Fig. 4(a). The

relative bandwidth for which IS1l I < S~=, with S~= the

maximum magnitude of the reflection coefficient in the

passband,’ is defined as

(+ — &J~
B=————— (2)

am

where the frequencies U1 and 02 define the lower and

upper passband edges, and u~ is the center frequency of

the response, defined by

u~ + al
i.Jm=——————

2“
(3)

The transformer consists of lines with an electrical length

of a quarter wavelength at frequency UO. The ratio t, where

*=!!! (4)
U*

and t > (1 + B/2), determines the length of the lines used

in the transformer. The transformation [4]

()
p=u+ju= tanh(sT)=tanh :

26.)0
(5)

(where p is Richard’s variable, s = u + jw is the Laplace

variable, and T is the delay time of the lines) transforms

the response into the p-plane response shown in Fig. 4(b).

The frequencies Ul, Vz, and Un are given by

‘l,=tan[(+a ‘6)

(7)

An impedance transformer of even-order n with r open-

circuit stubs and (n – r) unit elements, as shown in Fig. 2,

has r transmission zeros at p + co, corresponding to the

open-circuit stubs, and (n – r) transmission zeros at p 2 =1,

corresponding to the unit elements.

To find a family of characteristic functions [4] with

equiripple properties in the passband and poles at the

frequencies of the transmission zeros, the p-plane response
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Fig. 4. Frequency responseof a generafshort-step-stubtransformer in (a) the s-plane (real frequency) and (b) the p-plane
(Richard’s variable),

is transformed to the z-plane with the transformation [5]

The general parameter Chebyshev function in the z-plane

[4], [5] is defined by

~(z) F(_,)= [P(Z) +P(-Z)]2
4P(Z) P(– Z)

(9)

where the polynomial P(z) is given by

r )l+V; ‘ ‘-r
P(z) =(l+z)’ —+2 .

l+V;
(lo)
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The two factors in (10) correspond to transmission zeros at Fig, 5. The performance parameter K. as a function of bandwidth for

2 – 1 The function F(z) F( – z) is now trarts-p~coandp – .
short-step transformers (solid lines) and quarter-wave transformers
(broken lines).

formed back to the p-plane to find the required transmis-

sion coefficient
networks leads to

1
1s2112= (11)

l+k2F(z)F(–z) z’=(”; -”2)/(”< -02)

which is in a form suitable for synthesis. For r = O, r = n /2,

and r = n, simple closed-form solutions exist for the poles

and zeros of the transmission coefficient.

III. MATCHING PERFORMANCE OF SHORT-STEP

TRANSFORMERS

The maximum voltage standing-wave ratio in the pass-

band of an impedance transformer can be found from the

value of the characteristic function at the frequency s = O,
which corresponds to p = O and therefore to z = ZO=

+ V2/vl. At this frequency, no impedance transformation

takes place, and the reflection coefficient is determined by

the ratio of the terminating resistances of the transformer.

Application of the identity IS1112+ ISzll 2 = 1 for lossless

R2– R1
S21(0) = ~ +R =

1 & (12)
2

where

K:= F(zO)F(– Zo). (13)

For a given relative bandwidth, order, and resistance ratio

R = R ~/R1, (12) can be solved for k, resulting in

k2=(R-1)2 ~

4RK; -
(14)

The passband ripple of the transformer is given by

L~=1010g(l+k2) (15)

and the maximum passband voltage standing-wave ratio is

given by

VSWR = (~= + k)2. (16)
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The value of KO

the transformer.

function of the

determines the passband performance of

Fig. 5 shows the logarithm of KO as a

relative bandwidth for transformers of

orders n=2ton=8, forr=O and r=n/2, and t=4.

(For transformers with other values of r, K. lies between

the curves for r = O and r = n/2.) For purposes of com-

parison, the logarithm of KO is also shown for quarter-wave

transformers of order n/2. The figure shows that the

performance of a short-step transformer is roughly com-

parable with that of a quarter-wave transformer of order

n/2, regardless of the specific topology of the short-step

transformer.

IV. ELEMENT VALUES

Element values were calculated with a simple synthesis

procedure, which is an extension to distributed networks

of a synthesis procedure for lumped-element networks

which was described by Lind [6]. It is outlined below.

The transmission parameters (Al?Cl)) of the trans-

former are found by standard parameter identification

procedures, e.g., [7]. Also, the inverse transmission parame-

ter matrices of a general open-circuit stub and a unit

element, the basic sections from which the transformer is

assembled, are determined. Synthesis is carried out by

inspecting the poles of the transmission parameters of the

transformer to determine the types of section which can be

extracted. A section is then extracted by pre- or postmulti-

plying the transmission matrix of the transformer with the

inverse matrix of the section. The characteristic impedance

of the section is chosen such that order of the relevant

transformer parameters in the resultant matrix is reduced,

either by cancellation with poles of the parameters or by

cancellation of the coefficients of the highest or lowest

term of the numerators. The procedure is repeated until

the order of the transmission matrix is reduced to zero and

only an ideal transformer remains. Since the order of two

parameters are reduced at each step, numerical accuracy

can be verified by ensuring that the order of both parame-

ters are indeed reduced simultaneously. An example, the

synthesis of a fourth-order short-step-stub transformer, is

given in the Appendix.

Element values are shown in Table II for octave-band-

width short-step-stub transformers with r = n/2 and line

lengths of A ~/8 (t= 2) and A ~/16 (t= 4). The termina-

tion RI (see Fig. 2) is normalized to 1 0, and the other

port is terminated in a resistance of R L?.

Comparison of element values with those of short-step
transformers [2] shows that the A~/8 short-step-stub

transformers, which are comparable in size to the A~/16

short-step transformers, exhibit a much smaller spread in

element values than the short-step transformers, and a

slightly smaller spread than Levy’s transformers. The

A ~ /16 short-step-stub transformers have an element value

spread similar to that of the short-step transformers, but

are more practical when parallel-connected stubs are used

to reduce the ratio of element values in the transformer.

As t is increased, the elements of the short-step trans-

formers become shorter and the impedance range within

TABLE II
OCTAVE-BANDWIDTHSHORT-STEP-STUBIMPEDANCE

TRANSFORMERS

,e length: km/8 6=0,67

=4

R 2 3 5 7 10

LINE 1 1.4690 1.7428 2.1300 2.423o

STUB 1

2.7776

2.42o3 2.4868 2.7745 3.0490 3.4110
LINE 2 2.1878 2.9277 4.1495 5.1848 6.532o

STUB 2 3.6045 4.1774 5.4049 6.5244 8.0215

VSWR 1.2043 1.3536 1.5946 1.8o11 2.0806

=6

R 2 3 5 7 10

LINE 1 1.2962 1.4482 1.6486 1.7916 1.9567

STUB 1 2.3056 2.2784 2.3752 2.4840 2.6308

LINE 2 2.0125 2.4915 3.2217 3.8045 4.5323

STUB 2 1.9633 2.3302 2.g944 3.5632 4.2993

LINE 3 2.4104 3.3882 5.1378 6.7251 8.9117

STUB 3 4.2875 5.3306 7.4021 9.3245 11.9818

VSWR 1.0716 1.1195 1.1910 1.2479 1.3199

=8

R 2 3 5 7 10

LINE 1 1.1876 I .2766 1.3889 I .466o 1.5525
STUB 1 2.4141 2.3117 2.2968 2.3214 2.3678

LINE 2 1.8106 2.1092 2.5315 2.8494 3.2296
STUB 2 1.6796 1.9023 2.2824 2.5918 2.9766
LINE 3 2.2951 2.9994 4.1657 5.1572 6.4554

STUB 3 2.1293 2.7051 3.7557 4.6g10 5.9496
LINE 4 2.5124 3.6478 5.7770
STUB 4

7.7898 10,6636
5.107 I 6.6061 9.5533 12.3357 16.2642

VSWR 1.0257 1.0423 1.0663 1.0848 1.1075

ne length Am/16 B = 0,67

=4

R 2 3 5 7 10

LINE 1 2.3775 2.9548 3.7198 4.2772 4.9370

STUB 1 0.5926 0.6378 0.7330 0.8142 0.9172
LINE 2 4.2162 5.7189 8.1655 10.2335 12.9284

STUB 2 1.0509 1.2345 1.6090 1.9481 2.4019

vSWR 1.1760 1.3025 1.5035 1.6735 1.9008

=6

R 2 3 5 7 10

LINE I 1.9950 2.3333 2.7462 3.0271 3.3417

STUB 1 0.5558 0.5701 0.6105 0.6456

LINE 2
0.6894

4.0552 5.0219 6.4637

STUB 2
7.6o24 9.0154

0.5615 0.6781 0.8787 1.0477 1.2648
LINE 3 4.6oo8 6.5479 10.0111 13.1549 17.4970
STUB 3 1.2819 I .5999 2.2253 2.8059 3.6096

VSWR 1.0576 1.0958 1.1521 1.1966 1.2524

=8

R 2 3 5 7 10

LINE 1 1.7272 1.9420 2.1907 2.3524 2.5275
STUB I 0.5640 ::;;;; 0.5686 0.5819 0.5997
LINE 2 3.656o 5.0825 5.6939
STUB 2

6.4183
0.4851 0.5564 0.6708 0,7618 0.8737

LINE 3 4.67o2 6.0967 8.4369 10.4170 13.0026
STUB 3 0.6192 0.7g66 1.1132 1.3934 1.7697
LINE 4 4.7o6o 6.9249 11.0754 15.0046 20.6283
STUB 4 I .5390 1.9898 2.8772 3.7147 4.8g8]

VSWR 1.0193 1.0317 1.0496 1.0633 1.0800

the transformer increases, so that the transformer becomes

more difficult to implement in distributed form. As the

lines become shorter, however, the short-step-stub trans-

former with r = n/2 in particular increasingly reminds one

of a direct semi-lumped-element implementation of

Matthaei’s classic LC impedance matching filter [8].

This filter can, in fact, be synthesized directly from (11)

as an LC network in the p-plane with r = n (i.e., all

p-plane transmission zeros at infinity). The transmission

zeros at p 2 = 1 in a short-step transformer lie increasingly
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farther away from the passband in the p-plane as t is

increased; with t large enough, whether these transmission

zeros lie at p 2 = 1 or p -+ co makes little difference to the

shape of the transformer’s passband frequency response

since (8) maps both sets of transmission zeros to very

nearly the same point in the z-plane. The relation of (5)

also becomes linear in the vicinity of the passband.

For large values of t, the performance parameter KO is

the same for the different short-step topologies. The

lumped-element matching network will therefore have a

passband response similar to that of a short-step trans-

former since the tangent function in (5) is approximately

equal to its argument for small angles. Low-impedance

stubs and high-impedance unit elements, which are dif-

ficult to realize, may therefore be replaced by lumped-ele-

ment capacitors and inductors without significant effect on

the passband response. (The stopband response will be

affected, and the response will no longer be a periodic

function of frequency.)

The r = n/2 short-step-stub design therefore provides

an exact procedure for the semi-lumped-element imple-

mentation of lumped-element impedance transformers, and

helps to develop an understanding of the relationship

between lumped- and distributed-element filters.

V: CONCLUSION

A general procedure for the synthesis of short-step im-

pedance transformers has been presented. In particular,

one member of the short-step family, with r = n/2, is very

compact and relatively easy to implement. Simple expres-

sions for evaluating the passband performance of imped-

ance transformers have been derived, and element values

are given for a selection of compact octave-bandwidth

transformers.
The relationship between short-step transformers and

lumped-element impedance matching networks has been

pointed out, leading to an exact procedure for the semi-

lumped implementation of lumped-element transformers.

APPENDIX

For a fourth-order short-step-stub impedance trans-

former with X~/12 lines (t = 3), a relative bandwidth 11 of

20 percent, and a transformation ratio R =5, it follows (to

five significant digits) from (6), (8), (10), and (12)-(16)

that VI = 0.50953, Vz = 0.64941, K; = 2083.2, k 2 =

0.00038403, Lm = 0.0017 dB, VSWR = 1.040. The maxi-

mum value of the reflection coefficient S~= in the pass-

band is –, 34.16 dB. The transmission parameters for the

transformer doubly terminated with unit resistors are [7]

[1

1All.
CD I–pz

“[

2.2361 + 15.117p2 + 15.980p4 4.2783p + 8.2586P3

4.2783p + 8.2586p3 10.4472 + 4.2680p2 “

(Al)

867

The transmission parameters have two common falctors

~~ in their denominators, implying that unit elements

may be removed at any time from any port. The parameter

A, the inverse of the open-circuit voltage ratio of the

impedance transformer, has one more transmission zero at

infinity than parameters I) and C, and two more than

parameter D. This implies a parallel shunt open-circuit

stub at port 2, and a series-shorted stub at port 1. .From

Kuroda’s identities [4], we know that such a series stub

followed by a unit element is equivalent to a unit element

followed by a shunt open-circuit stub. The parameters are

therefore compatible with the topology of Fig. l(d).

It is noted that the inverse transmission parameters of a

unit element with characteristic impedance 20 are given by

and those of a shunt open-circuit stub with characteristic

admittance YO are given by

[AO :l-’=[-ho v ‘A3)
To extract a unit element from the left side of the imped-

ance transformer, it is noted that when a set of transmiss-

ion parameters with a common factor ~~ in their

denominators are premultiplied with the inverse transmis-

sion matrix of a unit element, the result is of the form

(l-pZ)-’[-, R]
z –1 A–pB/z, B–pz,A

. (l-p ) [ 1C–pD/Zo D – pzoc -
(A4)

A reduction in order is possible if the factor (1 – p2) in the

denominator cancels with a similar factor in the numera-

tors of the parameters. To create zeros at p2 = 1 in the

numerators, an element with characteristic impedance

20= II(l)/A(l) = D(l)/C(l) must be extracted. Note that

the extraction is possible only if both conditions for ,Zo are

met. Also note that this simple extraction corresponds to

the conventional extraction with Richard’s theorem. Ex-

traction of an element with characteristic impedance 2.6588

Q from (Al) leaves the matrix

1

{1-p’

2,2361 +5 .9777p2 3 .0893p 13.4373p+ 6.0103p3 0.44722 + 3.1061P2 “

(A5)

From this matrix, a shunt open-circuit stub may be ex-

tracted from the left or the right side as the parameter C,

the inverse of the open-circuit transfer impedance, has two
transmission zeros at infinity, while the parameter B, the
inverse of the short-circuit transfer admittance, has none.

For an extraction from the left side, it is noted that

premultiplication of a set of transmission parameters with

the inverse matrix of a shunt open-circuit stub with char-
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acteristic admittance YO results in

The transmission zero at infinity is removed, and the order

of the matrix reduced by a cancellation of highest-order

coefficients in C‘ and D‘. Therefore

P..(:) =:~.(;} ‘A’)

YO= lim

Removal of an element with characteristic admittance

YO=1.0055 S leaves the matrix

& [2.2361 + 5.9777p2 3.0893p

1.18907p 10.44722 -
(A8)

Further extraction of a unit element 20= 6.9077 L! and a

shunt stub YO= 0.3870 S leaves the matrix

[
2.2361 0

0 0.44722 1 (A9)

which represents an ideal transformer with a turns ratio of

“2.2361: 1. The transformer transforms the normalized 1-!J

load resistor to the specified 5-Q load.
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