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Short-Step-Stub Chebyshev Impedance
Transformers

PIETER W. VAN DER WALT, MEMBER, IEEE

Abstract —A ftransfer function for short-step impedance transforming
filters consisting of short cascaded TEM transmission-line sections and at
least one commensurate length open-circuit stub is described. Element
values are given for a particular family of octave-bandwidth short-step
transformers that are much more compact than existing short-step trans-
formers.

I. INTRODUCTION

HE well-known quarter-wave impedance transformer
[1] provides a convenient way to match a resistive
load to a generator with a resistive output impedance. The
transformer is easy to implement since the line characteris-
tic impedances all lie within the range defined by the port
resistances. The transformer is relatively long, which can
be a disadvantage in microwave integrated circuits, espe-
cially those working at the lower microwave frequencies.
For purposes of comparison, the stripline layout of a
second-order quarter-wave transformer providing a match
between resistances of 1 and 10 £ over a relative band-
width of 60 percent is shown in Fig. 1(a). Element values
from the quoted references are shown in Table I for this,
as well as the other transformers mentioned below.
Matthaei [2] described a short-step transformer which
consists of an even number of cascaded unit elements. The
transformers are usually constructed from lines with a
length of 1/12 or 1/16 of a wavelength at the center
frequency of the response. Since the passband performance
of a short-step transformer of order 2n is roughly com-
parable to the performance of a quarter-wave transformer
of order n, the quarter-wave transformer is twice as long as
an equivalent short-step transformer with A /16 lines.
Short-step transformers are, in general, more difficult to
realize than quarter-wave transformers because of large
step discontinuities between sections and the large range of
impedance values within the transformer. For example, a
four-section X /16 Chebyshev transformer which matches
resistances with a ratio of 10:1 over a fractional band-
width of 60 percent, with a layout as shown in Fig. 1(b),
has lines with a ratio of 15.4 between highest and lowest
characteristic impedance [2]. This makes the transformer
unsuitable for many microstrip and stripline applications.
A remarkable short-step impedance transformer pro-
posed by Levy [3] reduces the realizability problems to a
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Fig. 1. Stripline layouts of impedance transformers with comparable
performance. (a) Quarter-wave. (b) A /16 Matthaei short-step. (c) A /16
Levy short-step. (d) A /16 short-step-stub.
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TABLE1
ELEMENT VALUES OF THE TRANSFORMERS IN FiG. 1 FOR A MATCH
BETWEEN 15 AND 150

Transformer Figure Element Values from left to right
Type Ohms

Quarter Wavel 1(a) | 28.94}77.96

Matthaei

Short-step 1{b) | 66.63112.09 | 186.1 | 33.77

Levy

Short-step 1(c) | 23.01 | 43.10 116.50 { 105.0 [45.23
Short-step-

stub 1(d) | 74.06]13.76 | 193.9 ]36.03

great extent, as the spread in line impedances is decreased
considerably. Fig. 1(c) shows the stripline layout of this
transformer with a matching ratio of 10:1, a relative
bandwidth of 67 percent (one octave), and a shortest line
length of A /16. The length of the transformer is about the
same as Matthaei’s short-step transformer, but the ratio of
highest to lowest line impedance is only 6.4.

A new and very compact fourth-order A /16 short-step-
stub transformer, providing a match between 1 and 10 £
over an octave bandwidth, is shown in Fig. 1(d). The
transformer can be implemented with transmission lines
with a ratio of 14 between the highest and lowest char-
acteristic impedances. Since the stub lines can each be
fabricated in the form of two. stubs with twice the char-
acteristic impedance connected in parallel, the ratio be-
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Fig. 2. General form of short-step-stub transformers with r open-circuit
stubs and (n — r) cascade-connected unit elements.
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Fig. 3. Equivalent commensurate networks used for transforming a
transformer with one or two stubs into Levy’s short-step transformer.
The stubs in the equivalent network, one with negative and one with
positive characteristic impedance, are degenerate and do not contribute
a transmission zero.

tween the highest and lowest characteristic impedance can
be reduced to 7. The transformer is therefore easier to
realize than the short-step transformer in Fig. 1(b). The
nth-order transformer (with n even) of this type consists of
n /2 unit elements in cascade and r /2 open-circuit stubs.

In this paper, a general transfer function for the design
of short-step transformers is developed. It may be used to
synthesize short-step transformers of even-order n with r
(where r<n/2) open-cucult stubs and »n —r cascaded
unit elements, as shown in Fig. 2, to provide a match
between resistance loads R; and R,. This class includes
Matthaei’s transformer with r = 0, as well as Levy’s trans-
former, which is designed with »=1 or r=2, and then
transformed into its final form with the network equiv-
alence of Fig. 3. The characteristic immittances of the
equivalent network in Fig. 3(b) are given in terms of the
immittances of the prototype in Fig. 3(a) by

Z,+Z

C__1_2_2 (13)
Zz,-1

= 1b

4 Z+z, (1b)
Z.Y,—1

B=;1_2__. (10)
Z1+22

This transformation accounts for the very low imped-
ance spread in this transformer, as the cascade sections of
the transformed filter take on the average impedance val-
ues of the lines in the prototype filter. This averages out
the high—low impedance topology usually found in short-
step transformers. As the characteristic impedance of one
of the stubs in the equivalent network is always negative,
the prototype network must contain a stub with positive
characteristic impedance to absorb the negative element.
The transformation also accounts for Levy’s remark that
under certain conditions, negative element values result for
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this transformer. It should be noted that in this paper, n,
the order of the transfer function approximation, is equal
to the total number of elements in the different prototypes.
It corresponds to 2n for single-ordered zeros and 2n +2
for double-ordered zeros in Levy’s paper.

II. CHEBYSHEV TRANSFER FUNCTION
APPROXIMATION

Suitable transfer functions are derived by first trans-
forming the s-plane response to the p-plane using Richard’s
transformation; the p-plane bandpass response is then
transformed to the z-plane where a Chebyshev general
parameter characteristic function is found. This function is
transformed back to the p-plane where the transformers
are synthesized.

A typical frequency response for the short-step imped-
ance transformer of Fig. 2 is shown in Fig. 4(a). The
relative bandwidth for which |S;;| < S, with S, the
maximum magnitude of the reflection coefficient in the
passband, is defined as

Wy — W
B=—2>_"t )
where the frequencies w,; and w, define the lower and
upper passband edges, and w,, is the center frequency of
the response, defined by

Wy

wy + w;

O =5 3)

The transformer consists of lines with an electrical length
of a quarter wavelength at frequency w,. The ratio ¢, where

(4)

and ¢ > (1+ B/2), determines the length of the lines used
in the transformer. The transformation [4]

. ST
p=u+jv=tanh(sT)=tanh(—~) (5)
2w,
(where p is Richard’s variable, s =0 + jw is the Laplace
variable, and T is the delay time of the lines) transforms
the response into the p-plane response shown in Fig. 4(b)
The frequencies v,, v,, and v, are given by -

B\ #
vy, =tan (1+ 2)21‘

vm=tan(21t). (7N

An impedance transformer of even-order n with » open-
circuit stubs and (# — r) unit elements, as shown in Fig. 2,
has r transmission zeros at p — oo, corresponding to the
open-circuit stubs, and (n — r) transmission zeros at p? =1,
corresponding to the unit elements.

To find a family of characteristic functions [4] with
equiripple properties in the passband and poles at the
frequencies of the transmission zeros, the p-plane response

(6)
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Fig. 4. Frequency response of a general short-step-stub transformer in (a) the s-plane (real frequency) and (b) the p-plane
(Richard’s variable).

is transformed to the z-plane with the transformation [5]

(8)

The general parameter Chebyshev function in the z-plane
[4], [5] is defined by

p*+}
N

22

[P()+P(=2)

— 5} = 9

F(z)F(-z) (D) P(=2) )
where the polynomial P(z) is given by

P 1+z) L+ o 10

(2)= (4 2)'| ) T +2 (10)

The two factors in (10) correspond to transmission zeros at
p —> o0 and p?=1. The function F(z)F(~ z) is now trans-
formed back to the p-plane to find the required transmis-
sion coefficient

1
Sl = T R D)

(11)

22 = (0} = 0?) /(o] — o)

which is in a form suitable for synthesis. Forr =0, r =n /2,
and r = n, simple closed-form solutions exist for the poles
and zeros of the transmission coefficient.

III. MATCHING PERFORMANCE OF SHORT-STEP
TRANSFORMERS

The maximum voltage standing-wave ratio in the pass-
band of an impedance transformer can be found from the
value of the characteristic function at the frequency s =0,
which corresponds to p=0 and therefore to z=1z,=
+ v, /v;. At this frequency, no impedance transformation
takes place, and the reflection coefficient is determined by
the ratio of the terminating resistances of the transformer.
Application of the identity |S};|>+ |Sy|*=1 for lossless
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Fig. 5. The performance parameter K, as a function of bandwidth for
short-step transformers (solid lines) and quarter-wave transformers
(broken lines).

networks leads to
Rz - R1
R,+ R,

kK,
J1+ kK¢

Sy (0) = (12)

where
K§=F(zy) F(— z,). (13)

For a given relative bandwidth, order, and resistance ratio
R =R, /R, (12) can be solved for k, resulting in

(R-1)’
k= —o—. 14
4RK} (14)
The passband ripple of the transformer is given by
L, =10log(1+ k?) (15)

and the maximum passband voltage standing-wave ratio is
given by

VSWR = (V1+42 + k)™ (16)
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The value of K|, determines the passband performance of
the transformer. Fig. 5 shows the logarithm of K, as a
function of the relative bandwidth for transformers of
orders n=2to n=8§, for r=0 and r=n/2, and ¢t=4.
(For transformers with other values of r, K lies between
the curves for r =0 and r =n/2.) For purposes of com-
parison, the logarithm of K|, is also shown for quarter-wave
transformers of order n,/2. The figure shows that the
performance of a short-step transformer is roughly com-
parable with that of a quarter-wave transformer of order
n /2, regardless of the specific topology of the short-step
transformer.

IV. ELEMENT VALUES

Element values were calculated with a simple synthesis
procedure, which is an extension to distributed networks
of a synthesis procedure for lumped-element networks
which was described by Lind [6]. It is outlined below.

The transmission parameters (ABCD) of the trans-
former are found by standard parameter identification
procedures, e.g., [7]. Also, the inverse transmission parame-
ter matrices of a general open-circuit stub and a unit
element, the basic sections from which the transformer is
assembled, are determined. Synthesis is carried out by
inspecting the poles of the transmission parameters of the
transformer to determine the types of section which can be
extracted. A section is then extracted by pre- or postmulti-
plying the transmission matrix of the transformer with the
inverse matrix of the section. The characteristic impedance
of the section is chosen such that order of the relevant
transformer parameters in the resultant matrix is reduced,
either by cancellation with poles of the parameters or by
cancellation of the coefficients of the highest or lowest
term of the numerators. The procedure is repeated until
the order of the transmission matrix is reduced to zero and
only an ideal transformer remains. Since the order of two
parameters are reduced at each step, numerical accuracy
can be verified by ensuring that the order of both parame-
ters are indeed reduced simultaneously. An example, the
synthesis of a fourth-order short-step-stub transformer, is
given in the Appendix.

Element values are shown in Table II for octave-band-
width short-step-stub transformers with r =n /2 and line
lengths of A, /8 (t=2) and A, /16 (¢t =4). The termina-
tion R, (see Fig. 2) is normalized to 1 {, and the other
port is terminated in a resistance of R {2.

Comparison of element values with those of short-step
transformers [2] shows that the A, /8 short-step-stub
transformers, which are comparable in size to the A, /16
short-step transformers, exhibit a much smaller spread in
element values than the short-step transformers, and a
slightly smaller spread than Levy’s transformers. The
X, /16 short-step-stub transformers have an element value
spread similar to that of the short-step transformers, but
are more practical when parallel-connected stubs are used
to reduce the ratio of element values in the transformer.

As t is increased, the elements of the short-step trans-
formers become shorter and the impedance range within
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TABLE II
OCTAVE-BANDWIDTH SHORT-STEP-STUB IMPEDANCE
TRANSFORMERS
Line length: Am/8 B8 = 0,67
N = &
R 2 3 5 7 10
LINE 1 1.4630 1.7428  2.1300 2.4230 2.7776
STUB 1 2.4203  2.4868  2.7745 3.0490 3.4110
LINE 2 2.1878 2.9277 4.1495 5.1848 6.5320
STUB 2 3.6045  4.1774  5.40u49 6.5244 8.0215
VSWR 1.2043  1.3536  1.5946 1.8011 2.0806
N = 6
R 2 3 5 7 10
LINE T 1.2962 1.4482  1.6486 1.7916 1.9567
STUB 1 2.3056 2.2784 2.3752 2.4840 2.6308
LINE 2 2.0125 2.4915  3.2217 3.8045 4,5323
STUB 2 1.9633 2.3302 2,994  3.5632  4.2993
LINE 3 2.4104 3.3382 5.1378 6.7251 8.9117
STUB 3 4.2875 5.3306  7.4021 9.3245 11.9818
VSWR 1.0716  1.1195 1.1910 1.2479 1.3199
N =8
R 2 3 5 7 10
LINE 1 1.1876 1.2766 1.3889 1.4660 1.5525
STUB 1 2. 414 2.3117  2.2968 2.3214 2.3678
LINE 2 1.8106 2.1092 2.5315 2.8494 3.2296
STUB 2 1.6798  1.9023  2.2824 2.5918 2.9766
LINE 3 2.2951  2.9994%  4.1657 5.1572 6.4554
STUB 3 2.1293  2.7051  3.7557 h.6910 5.9496
LINE &4 2.5124  3.6478 5.7770 7.7898  10.6636
STUB 4 5.1071  6.606)  9.5533 12.3357 16.26h2
VSWR 1.0257 1.0423  1.0663 1.0848 1.1075
Line length Am/lé B =10,67
N = &
R 2 3 5 7 10
LINE 1 2.3775 2.9548 3.7198 4.2772 4.9370
STUB 1 0.5926 0.6378 0.7330 0.8142 0.9172
LINE 2 4.2162 5.7189 8.1655 10.2335 12.9284
STUB 2 1.0509  1.2345 1.6090 1.9481 2.4019
VSWR 1.1760  1.3025 1.5035 1.6735 1.9008
N==¢6
R 2 3 5 7 10
LINE 1 1.9950 2.3333  2.7462  3.0271 3.3417
STUB 1 0.5558  0.5701 0.6105 0.6456 0.6894
LINE 2 4.0552  5.0219 6.4637 7.6024 9.0154
STUB 2 0.5615 0.6781 0.8787 1.0477 1.2648
LINE 3 4.6008 6.5479 10,0111  13.1549 17,4970
STUB 3 1.2819  1.5999 2.2253 2.8059 3.6096
VSWR 1.0576  1.0958 1.1521 1.1966 1.252h
N =8
R 2 3 5 7 10
LINE 1 1.7272  1.9420 2.1907 2.3524 2.5275
STUB 1 0.5640  0.5577 0.5686 0.5819 0.5997
LINE 2 3.6560  4.2571 5.0825 5.6939 6.4183
STUB 2 0.4851  0.5564 0.6708 0.7618 0.8737
LINE 3 4.6702  6.0967 8.4369 10.4170 13.0026
STUB 3 0.6192  0.7966 1.1132 1.3934 1.7697
LINE & 4.7060  6.9249 11,0754 15,0046 20.6283
STUB & 1.5390 1.9898 2.8772 3.7147 54,8981
VSWR 1.0193  1.0317 1,0496 1.0633 1.0800

the transformer increases, so that the transformer becomes
more difficult to implement in distributed form. As the
lines become shorter, however, the short-step-stub trans-
former with r = n /2 in particular increasingly reminds one
of a direct semi-lumped-element implementation of
Matthaei’s classic LC impedance matching filter [8].

This filter can, in fact, be synthesized directly from (11)
as an LC network in the p-plane with r=n (ie., all
p-plane transmission zeros at infinity). The transmission
zeros at p> =1 in a short-step transformer lie increasingly
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farther away from the passband in the p-plane as ¢ is
increased; with ¢ large enough, whether these transmission
zeros lie at p2=1 or p —> co makes little difference to the
shape of the transformer’s passband frequency response
since (8) maps both sets of transmission zeros to very
nearly the same point in the z-plane. The relation of (5)
also becomes linear in the vicinity of the passband.

For large values of ¢, the performance parameter K|, is
the same for the different short-step topologies. The
lumped-element matching network will therefore have a
passband response similar to that of a short-step trans-
former since the tangent function in (5) is approximately
equal to its argument for small angles. Low-impedance
stubs and high-impedance unit elements, which are dif-
ficult to realize, may therefore be replaced by lumped-ele-
ment capacitors and inductors without significant effect on
the passband response. (The stopband response will be
affected, and the response will no longer be a periodic
function of frequency.)

The r=n/2 short-step-stub design therefore provides
an exact procedure for the semi-lumped-element imple-
mentation of lumped-element impedance transformers, and
helps to develop an understanding of the relationship
between lumped- and distributed-element filters.

V. CONCLUSION

A general procedure for the synthesis of short-step im-
pedance transformers has been presented. In particular,
one member of the short-step family, with r = n /2, is very
compact and relatively easy to implement. Simple expres-
sions for evaluating the passband performance of imped-
ance transformers have been derived, and element values
are given for a selection of compact octave-bandwidth
transformers.

The relationship between short-step transformers and
lumped-element impedance matching networks has been
pointed out, leading to an exact procedure for the semi-
lumped implementation of lumped-element transformers,

APPENDIX

For a fourth-order short-step-stub impedance trans-
former with A, /12 lines (¢ = 3), a relative bandwidth B of
20 percent, and a transformation ratio R = 5, it follows (to
five significant digits) from (6), (8), (10), and (12)-(16)
that v; = 0.50953, v, = 0.64941, KZ = 20832, k’=
0.00038403, L, =0.0017 dB, VSWR =1.040. The maxi-
mum value of the reflection coefficient S, in the pass-
band is —34.16 dB. The transmission parameters for the
transformer doubly terminated with unit resistors are [7]
(¢ 3]+

¢ bl 1-p

2.2361+15.117p2 +15.980p*
4.2783p +8.2586p°

2

4.2783p +8.2586p°
0.4472+42680p2 |

(A1)

867

The transmission parameters have two common factors
V1= p? in their denominators, implying that unit elements
may be removed at any time from any port. The parameter
A, the inverse of the open-circuit voltage ratio of the
impedance transformer, has one more transmission zero at
infinity than parameters B and C, and two more than
parameter D. This implies a parallel shunt open-circuit
stub at port 2, and a series-shorted stub at port 1. From
Kuroda’s identities [4], we know that such a series stub
followed by a unit element is equivalent to a unit element
followed by a shunt open-circuit stub. The parameters are
therefore compatible with the topology of Fig. 1(d).

It is noted that the inverse transmission parameters of a
unit element with characteristic impedance Z, are given by

1 ; pZO -1 1 _1p _-pZO
| 1| T 1
1 P ZO 1 P ZO

(A2)

and those of a shunt open-circuit stub with characteristic
admittance Y|, are given by

1 o' [ 1 o

To extract a unit element from the left side of the imped-
ance transformer, it is noted that when a set of transmis-
sion parameters with a common factor y1— p? in their
denominators are premultiplied with the inverse transmis-
ston matrix of a unit element, the result is of the form

_ 2_1 A/ B/
(1-r%) [c' D,]

(A3)

A—pB/Z, B-pZ,A

-1
=(-77 [c—pz)/z0 p—pzc| A9

A reduction in order is possible if the factor (1— p?) in the
denominator cancels with a similar factor in the numera-
tors of the parameters. To create zeros at p2=1 in the
numerators, an element with characteristic impedance
Z,= B(1)/A(1) = D(1)/C(1) must be extracted. Note that
the extraction is possible only if both conditions for Z, are
met. Also note that this simple extraction corresponds to
the conventional extraction with Richard’s theorera. Ex-
traction of an element with characteristic impedance 2.6588
{ from (Al) leaves the matrix

2.2361+5.9777p*

1 3.0893p
y1~—p? |3.4373p +6.0103p°

0.44722+3.1061p> |
(AS)

From this matrix, a shunt open-circui: stub may be ex-
tracted from the left or the right side as the parameter C,
the inverse of the open-circuit transfer impedance, has two
transmission zeros at infinity, while the parameter B, the
inverse of the short-circuit transfer admittance, has none.
For an extraction from the left side, it is noted that
premultiplication of a set of transmission parameters with
the inverse matrix of a shunt open-circuit stub with char-
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acteristic admittance ¥; results in
4 B1_| 4 B
& 5= [C—pYoA D —pYoB]- (A6)
The transmission zero at infinity is removed, and the order

of the matrix reduced by a cancellation of highest-order
coefficients in C’ and D’. Therefore

i {22} = Jm{55)
im ({— )= lim {—}.
p—= pA p—oo pB
Removal of an element with characteristic admittance
Y, =1.0055 S leaves the matrix

1 2.2361+5.9777p*
f1-p? 1.18907p

Further extraction of a unit element Z,=6.9077 & and a
shunt stub Y, = 0.3870 S leaves the matrix

[2.2361 0 ]
0 0.44722

Y= (A7)

3.0893p

0.44722 } (A8)

(A9)

which represents an ideal transformer with a turns ratio of

'2.2361:1. The transformer transforms the normalized 1-Q
load resistor to the specified 5-Q load.
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